THE FUNDAMENTALS OF CERAMICS SCIENCE

WHAT IS A CERAMIC?

Ceramics are

made of

covalent bonds between metal and

non-metal atoms. This

means that atoms share

electrons between

each other forming a

strong bond.

A ceramic is not a metal, nor a plastic (organic). They are what you would call a "a non-metallic inorganic solid". They are made of metallic elements mixed with nonmetallic elements. For example: Aluminum oxide (Al₂O₂), which contains aluminum (Al) and oxygen (O), or titanium carbide (TiC), which contains titanium (Ti) and carbon (C) or even silicon nitride (Si3N4) which contains silicon (Si) and nitrogen (N). The list goes on and on...

TRADITIONAL CERAMICS...

Are made of three basic ingredients: clay, quartz, and minerals. All these are found in nature and are used in different proportions according to their application to make things like bricks, pottery, and china.

ENGINEERING CERAMICS...

Are used for high-tech applications and are generally man-made as they need to be extremely pure. As a result, they offer properties not achievable with traditional ceramics.

NOW THAT YOU'VE BONDED THE ATOMS TOGETHER,

Ceramics can also have ionic bonds, where one atom donates spare electrons to the neighboring atom to form a bond with it. These are weaker than covalent bonds.

THINK ABOUT HOW THEY CAN BE ARRANGED...

Ceramics: Crystals have atoms arranged in a specific way with regular, repeating units. Think of a military parade, where every person is in a specific place!

Non- crystalline

Ceramics: Now think

of people milling in a

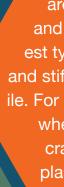
mall. Atoms in a non-crystal-

line ceramic are just like that -

arranged randomly. Did you know

that glass is a ceramic? A

glass is a type of non-


crystalline ceramic, which

gives it a wide range of

properties.

Crystalline

HIGH

Stiffness, Hardness, Melting point & Corrosion resistance

INTERMEDIATE

Density & Strength

Flexibility

Created by:

President's Council of Student Advisors

CERAMICANDGLASSINDUSTRY UNDATION

PROPERTIES OF CERAMICS

The properties of all materials are decided by their atomic structure and bonding. Ceramics have the strongest types of bonds, making them very hard and stiff. This also makes them brittle and fragile. For example, if a ceramic mug gets chipped when dropped, it is much more likely to crack when compared to a metallic or plastic mug. So, in general, how do the properties of CERAMICS compare to metals and polymers? Read to the left!

> For more information visit ceramics.org/ceramics-are-cool